
Shiranui: a Live Programming with Support for Unit Testing
Tomoki Imai Hidehiko Masuhara Tomoyuki Aotani

(Tokyo Institute of Technology, Japan)

Background: What is a Live Programming Environment?

Live programming is programming environment style which provides immediate feedback on source code changes.

Live programming makes “trial-and-error development” easier.

Live programmingtraditional (not live) programming

Make
algorithm

Write
code

Do some
“experiments”

Search
bugs

Done
Make

algorithm
Write code

Do “experiments”
Done

Live program-
ming systems

with each
keystroke

feedback
immediately

Unify!

We can use fresh run-time
information during coding

Push run-button
continuously

Experiments := Running the programs
and checking they behave as expected

Our Motivation: Using Live Programming in Practical Programming

Currently, live programming environments are mainly used for:

running samples,

programming very small projects,

checking functions’ behavior.

We want to use live programming environments in practical
programming which require:

many functions or submodules,

ensuring that the program works well.

But, existing live programming environments has three problems.

Problem 1: Single Entry Point

Existing live programming environments have only one entry point.

It is like a big “main” function. It causes:
long feedback loop,
ex. We cannot get sum(3)’s
feedback before sum(10000).

complex runtime log,
ex. sum(10000)’s log and sum(3)’s
one are merged.

lost feedback.
ex. sum(0) causes error, and
sum(5)’s feedback is lost.

=>
Not suitable for large programs.

Solution 1: Isolated Execution Point

Shiranui executes some parts of programs in isolated interpreters.

Faster feedback by parallel execution

Simpler execution logs

Errors are not propagated to another executions.

Execution flow:

1. Duplicate programs for each
isolated execution point (L:1,2,3,4).

2. Run programs parallelly and record
logs separately.

3. Give feedback to users.

Problem 2: No Support for Testing Frameworks

“Tests” in live programming environments are transient.

We need to check all return values ourselves when the source
code changes.

1: coding 2: checking 3: coding 4: checking

If we add testing frameworks like JUnit, “liveness” is lost.

Constructing expected values takes time.

Promoting transient tests to persistent tests also takes time.

1: check 2: copy value 3: paste value

Solution 2: Integrated Unit Testing Features

Unit testcases are expressed as isolated execution points.

Normal execution point
ex. f(1) returns 1.

Successful testcase
ex. f(2) should return 4 and actually returns 4.

Failed testcase
ex. f(3) should return 6 but actually returns 9.

Shortcuts for promoting experiments to unit testcases.
Reduce the cost to make expected values.

Modify the part of returned
value to create expected value.

Employ returned value as
expected value.

Input expected value by hands.

correct

incorrectpartially correct

Problem 3: No Support to Make Small Sub Problems

When debugging programs, we must create small programs, which
reproduce the problems. Live programming combines “editing” and
“debugging”, but do not support to make small sub problems.

Figure: cont(1) has strange behaviors, but we cannot debug it directly.

Solution 3: Take Out Function Call From Runtime Log

Shiranui enables user to take a function call from a runtime log.

We can generate small sub problems by taking out function call,
which seems to cause the wrong result.

1. Select execution points.
2. Show history, select bindings.

ex. choose bindings where n = 0.

3. Select function call and take it out

Advantages:
Get complex data without
constructing by hands.
Even function objects can be a part of
test cases.


